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ABSTRACT 

When a plane harmonic wave has oblique incidence on a stack of 
homogeneous dielectric slabs, the field in each layer consists of an 
outgoing and a reflected wave.    The complex amplitudes of these plane 
waves in layer n are denoted by An and Bn, and simple recursive re- 
lations are derived for An+i and Bn+i as functions of An and Bn.    The 
solution begins by setting AQ = 1 and BQ = 0, and it is completed by 
calculating the transmission and reflection coefficients of the plane 
multilayer as simple functions of Aj^+i and Bj^+j where N represents 
the total number of layers. 

This technique is also applicable when a plane wave is incident 
on a multilayer dielectric cylinder or sphere.    The required equations 
are derived for the cylindrical case with normal incidence.    The rigorous 
solutions and digital-computer programs are included for both principal 
polarizations for plane and cylindrical multilayers. 
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EFFICIENT RECURSIVE SOLUTIONS  FOR 
PLANE AND CYLINDRICAL MULTILAYERS 

I. INTRODUCTION 

The transmission and reflection coefficients of a plane dielectric 
multilayer are pertinent in the design of radomes and in other appli- 
cations.    One type of corner reflector has one of its three conducting 
surfaces coated with several dielectric layers which arc designed to 
produce a right-circularly polarized reflection when the incident wave 
is right-circularly polarized.    Multilayer dielectric spheres and cy- 
linders form an important class of antenna scanning and echo enhance- 
ment devices. 

A matrix-multiplication solution for the plane multilayer is 
described by Collin[l].    This matrix solution represents a distinct 
advance over the older methods.    A recursive formulation developed 
here is even more straightforward in its theory and more efficient for 
numerical calculations.    The technique is applicable also to radially 
layered cylinders and spheres, waveguides containing two or more media, 
and surface waves on plane multilayers. 

This report presents the derivation of the recursion formulas for 
plane and cylindrical multilayers.    The two principal polarizations are 
considered, and digital-computer programs are included.    This solution 
can be applied directly to the analyses of inhomogeneous slabs and cy- 
linders by using piecewise uniform approximations for the permeability 
and permittivity functions. 

II.   THE THEORY OF THE 
PLANE MULTILAYER 

Suppose a harmonic plane wave in free space has oblique incidence 
on a plane multilayer consisting of N homogeneous isotropic slabs, as 
indicated in Fig.   1.    Let cL^, \in and en represent the thickness, permea- 
bility, and permittivity of slab n.    The slabs are considered to have 
infinite width and height and parallel surfaces, with unbounded free 
«pace on both sides of the multilayer.    The incident plane wave impinging 
on the left-hand surface of the multilayer is given, in the TE case (i. e. 
perpendicular polarization) by 
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Fig.   1.    A plane multilayer,  illustrating the outgoing and 
reflected waves in each layer. 

(1) E_\ = E„ e 
jk0y sin9   jkQz cos6 

where 8 is the angle of incidence, k0 = 2ir/X, and X is the free-space 
wavelength.    The reflected plane wave is given by 

(2) Er = R E   eJk°y sin9 e"Jkoz cosÖ , 
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where R is the reflection coefficient of the multilayer.    The transmitted 
plane wave on the right-hand side of the multilayer is represented by 

(3) El = T E   eJkoy sinG  eJkoz cos9 , 

where T is the transmission coefficient of the multilayer.    The field in 
each layer can be regarded as an infinite series of plane waves bouncing 
back and forth, but it is more convenient (and equally valid) to consider 
it to be the sum of only two plane waves,  one traveling outward and one 
reflected. v 
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• <*> En = (Aa e^nz + Bn e-Vn^    eJkoV *™»        , 
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Similarly»   in layer n+1 the electric field intensity is given by 

(5) En+l = (An+1 eVntlz + Bn+1 e-Yn+1 z) eJk0Y ■*"*    . 

The boundary between layers n and n+1 is located at 

(6) zn = di + d2   + ds + + + dn      . 

By enforcing the boundar/ conditions on Ex and Hy at z = zn, we can show 
that 

<7> An+l^Pn^+QnB,, 

and 

| (8) Bn+i = Rn An + SnBn    , 

where 

(9) Pn = 0.5(1 ^n+iYn/fInYn+i)   e(>n-Yn+1)znf 

(10) Qn = 0.5 (1 - Kn+lVn^nYn+1) e^n* Yn+1>*„       , 

(11) Rn=0-Ml-iln+lYn/^n+1)e
tVn+>n+l)Zn    . 

and 

| (12) Sn= 0.5(1 +|ln+lYn^nVn+l)e"(Yn" Yn+1,Zn 



The propagation constant yn for layer n will be complex if the I 
medium is dissipative.   Both the real and imaginary parts of Yn will be 
positive.    If layer n is a lossless medium,  Yn w^l De purely imaginary. _, 
The wave equation is employed to obtain the following equation for Yn: | 

<i3) Vn = jJ^Hwii ~ ko sin2 °      • 

The reflection and transmission coefficients of the multilayer 
(R and T) are often of particular interest.   We can calculate these 
quantities in a systematic manner by setting 

(14) A0=l 

and 

(15) Bo=0 

and then using the recursion equations Eqs. (7) and (8) to calculate Aj, 
Bi» Ai, Bi,   ... A^j+l,  and BN+1 *n that order.   This process is usually 
carried out on a digital computer. 

From Eqs. (1) through (4), 

<16> Eo = AN+l   • 

(17) R = ^N+i 
AN+1 

and 

(18) T = 1 

AN+1 
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in the TE case the constants An and Bn represent the electric 
field intensities of the outgoing and reflected waves in each layer.    In 
the TM case (parallel polarization) the solution proceeds in the same 
manner.    In fact,  the equations given above apply in both cases but the 
An and B„ represent the magnetic field intensities in the TM case and 
ptn+l and nn must be replaced with en+i and «n in Eqs.   (9) through (12). 

If a perfectly conducting sheet is placed on the right-hand surface 
of the multilayer (i.e.,  on the xy plane),  the solution is again given by 
the equations above with the exception that we do not calculate the trans- 
mission coefficient T in this case,  and Eqs.  (14) and (15) are replaced 
with 

(19) Ai = 1   and Bi = -1   in the TE case 

and 

(20) Ai = 1 and Bi = 1      in the TM case. 

Equations (19) and (20) are obtained by forcing the tangential electric 
field intensity to vanish at the perfectly conducting plane. 

The insertion phase delay, denoted by the symbol IPD,  is equal to 
the phase angle of the complex transmission coefficient T but is of opposite 
sign: 

(21) IPD s - Phase (T) 

In the previous equations,  the reflection coefficient R is defined as 
the ratio of the reflected wave amplitude to the incident wave amplitude 
at the coordinate origin; that is, 

E' (0,0,0) 
(22) R = _i     for the TE case 

=1(0.0,0) 

and 

100.0,0) 
(23) R=_Z      for the TM case. 

Hl( 0.0.0) 



Let R' represent the ratio of the reflected and incident wave amplitudes 
at the point of incidence where (x.y.z) = (0,0, d). with d representing the 
total thickness of the multilayer.    Then 

(24) R' = R e -2jk d cos 6 r 
Equation (24) can be verified by means of Eqs.  (1) and (2) and the de- 
finition of R'.    The two reflection coefficients.  R and R',  differ only in 
phase. 

A digital-computer program based on these equations is given in 
Appendix I, and some numerical results are included in Section IV. 

III.      THE  THEORY OF  THE CYLINDRICAL 
MULTILAYER 

Consider a plane harmonic wave in free space to have normal 
incidence on a dielectric cylinder of infinite length,  as suggested in Fig. 
2.    The cylinder axis is taken to be the z axis in a rectangular coc Mr„3te 
system,  and the x axis is the axis of propagation of the incident plane 
wave.    Let the cylinder consist of M lossless homogeneous layers, each 

PROPAGATION 
AXIS 

Fig.  2.    Circular dielectric cylinder with several 
homogeneous layers. 
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layer being a circular cylindrical shell.    The permeability and permit- 
tivity of layer m are denoted by nm and cm,  and the phase constant is 
given by 

(25) km  = wJHm' «m 

In the TM case the electric field intensity has only a z component,  given 
in layer m by 

(26) Em =     7   [Amn Jn(kmp) + Bmn Nn(kmp)J  cos n* , 

n=0 

where (p,4>»z) are the cylindrical coordinates and Jn and Nn represent 
the Bessel and Neumann functions.    The time dependence»  ejwt,  \8 under- 
stood.    In the TE case the solution is obtained from the equations given 
here by interchanging u and c and E and H, where H represents the mag- 
netic field intensity. 

The coefficients Amn and Brnn must be determined by applying the 
boundary conditions on Ez and rL> at each interface.    From Maxwell's 
equations»  the 4> component of the magnetic field intensity in layer m is 
given by 

0« 

(27) Hm * (km/jo>um)    Y   [Amn Jn(kmp) + Bmn Nn(kmp)] cos n<j> . 

n=0 

where Jn and N'   denote the derivatives of the Bessel and Neumann functions 
with respect to the argument. 

Let Rm denote the outer radius of layer m.    From the boundary 
conditions at this interface between layers m and m+1,  it is found that the 
wave expansion coefficients for the two regions have the following linear 
relations: 

(28) Am+ltn = UmnAmn + WmnBmn 

and 

(29) Bm+l,n = VrmAnn + XmnBmn   • 



where 

<30> Umn ~- (irRm/2fim) [-^m+lkmJ^kmRm)Nn(km+1Rm) 

+ ^mkm+lJn(kmRm)^n(km+1Rm)J    . 

(31) Vmn = (TrRm/2jxm) [ lxrn+ikmJn(kmRm)jn(km. }Rm) 

" ^mkm+lJn(kmRm)Jn(km+1Rm)J    , 

<32> Wmn = (.Rm/2^m) [-^m+1kmN;(kmRm)Nn(km. lRm, 

+ ^mkm+lNn(kmRm)N;(km+1Rm)J     . 

and 

(33) Xmn = (»Rm/2|im) [ ^n+lkmNn<kmRm>Jn(km+lRm> 

" ^mk
m+lN„tkmR

m>j;'km+l
Km»     ■ 

If the coefficients in the first layer (Ain and Bin) were known,  the 
coefficients in the remaining layers could be calculated by using Eqs.  (28) 
and (29) recursively.    To permit a procedure of this type,  let us define a 
set of normalized coefficients Amn and Bmn related to Amn and Bmn by 
the proportionality constant Kn as follows: 

(34) Amn = Kn Amn 

and 

(35) Bmn = Kn Bmn   • 

With no loss of generality,  let 

(36) Am= 1 . 



I 
I If the center layer is a dielectric medium,  the field must be finite at 

the origin and 

I 
(37) Bto * 0 . 

I 
The normalized coefficients also obey the same recursion formulas and 

I we can now calculate A£n.  Bin,  ... Aj^n »  BU, A^J+J^,  and B^+l.n 
in that order. 

I The field in the exterior free-space region is given by 

oa 

<38> EM+1 = J tH)" en Jn<koP) + CnHn(2)<koP)J  cos n*   » 

n=C 

where Hn^'(k0p) represents the Hankel function and kQ is the phase con- 
stant of free space.    The first series in Eq.  (38) represents the incident 
plane-wave field,  and the second series is the scattered field which con- 
tains outward-traveling waves only.    The function en is unity if n = 0,  and 
en = 2 if n is greater than zero. 

The field in the exterior free-space region is also given by Eq.  (26) 
with m = M+l.    Comparison of the two representations reveals that 

(39) AM+ljn - j BM+i,n = H/1 e
n 

The constant of proportionality,  Kn,  is found from Eqs.  (34),  (35),  and 
(39) to be 

H)n  en 
(40) Kn=   -, -S        . 

AM+l,n"J BM+l,n 

The scattering coefficients for the external region are given by 

11    -v Dl , - (-j)" en B'     . 

h*+l,n+j AM+l,n 

I 



This completes the solution.    Equation (26) can be employed to calculate 
the field at any point in the dielectric cylinder,   and Eqs.   (38) and (41) 
are used to calculate the field at any point outside the cylinder. 

If the dielectric media are lossless, it may be noted that the con- 
stants A^n, B^n. Umn. Vmn, Wmn, and Xmn are real. The external 
scattering coefficients,  Cn,  are complex. 

In the case of a perfectly conducting circular cylinder with one 
or more dielectric layers»  let "a" be the radius of the conducting 
cylinder and R% the outer radius of the first dielectric layer.    The above 
equations again give the solution if Eq.  (37) is replaced with 

Jn(k,a) 
(42) Bin ~ -   —         £or the ™ case, 

Nn(kia) 
and 

Jn(kia) 
(43) Bin = ~ for the TE case. 

Nn(kia) 

Equations (42) and (43) are obtained by setting Ez = ü or E<p = 0 at the 
conducting surface. 

At any po.nt in space outside the dielectric cylinder, the scattered 
field is given in the TM case by 

(44) Es =     2  H)n en DnHn(koP) cos net»   , 

n=0 

where the superscript (2) is understood on the Hankel functions H (k p) and 

(45) Dn=      "BM+1'n 

BM+l,n + J AM+l,n 

In calculating the scattered field at a great distance from the cylinder,  we 
use the asymptotic form for the Hankel functions of large argument to show 
that 

(46) Es = slZj/Trk0p    e"Jk°p     >      enDn cos no . 

10 



When a plane wave is incident on a cylindrical structure of infinite 
length,  the distant scattering pattern is conveniently described by the 
echo width which is defined as follows: 

(47) W = limit Z-np      !ES/E1, 

P— " 

i |2 

In Eq.  (38) the incident electric field intensity E1 is taken to have unit 
magnitude.    From Eqs.  (46) and (47) the bistatic echo width of the multi- 
layer dielectric cylinder is given by 

(48) W = (2\/ir) y 
n=0 

enDn cos n4> 

where X  is the wavelength in free space. 

A digital-computer program based on these equations is included 
in Appendix II. 

IV.      NUMERICAL RESULTS 

Figure 3 shows the transmission coefficient and insertion phase 
delay versus frequency for a plane multilayer,  calculated with the aid 
of the equations in Section II.    Numerical calculations obtained with these 
equations have been found to agree with those published by other investi- 
gators. 

Figure 4 ^hows the distant scattering pattern of a cylindrical 
multilayer,  calculated with the equations given in Section III.    These 
equations are also found to yield results which agree with previously 
published data. 

V.       CONCLUSIONS 

An efficient recursive solution is developed for the transmission 
and reflection coefficients of a plane multilayer and for the scattering 
pattern of a cylindrical multilayer.    The two principal polarizations are 
considered,  and digital-computer programs are included.    The technique 
is also applicable to the multilayered sphere. 

11 



i 
The appropriate equations are also given for the reflection co- I 

efficients of a perfectly conducting plane which is coated with a stack * 
of homogeneous dielectric sheets«  and for the scattering pattern of a 
perfectly conducting circular cylinder coated with several homogeneous 
dielectric layers. 

* REFERENCE 

1. Collin,  R. E.,  Field Theory of Guided Waves,  McGraw-Hill Book 
Co.,  New York  (I960)   pp. 79-85. 
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APPENDIX I 
COMPUTER PROGRAM FOR THE PLANE MULTILAYER 

A computer program for the reflection and transmission coefficients 
of a plane multilayer is shown in Fig.   5.     This program,  written in the 
computer language known as Scatran,   is based on the equations given in 
Section II.    The symbols used for the input data are defined as follows: 

KKK =   Number of cases to be calculated with different 
frequencies or angles of incidence 

N =  Number of layers 
D(I) =   Thickness of layer i in inches 
E(I) =   Dielectric constant of layer i relative to that of 

free space 
TD(I) =  Electric loss tangent of layer i 
U(I) =   Permeability of layer i relative to that of free space 
TP(I) =  Magnetic loss tangent of layer i 
THETA      = Angle of incidence in degrees 
FGC =   Frequency in gigacycles 

Some of the other symbols used in the program are defined below. 

TH = Angle of incidence in radians 
WAVE =   Wavelength in free space,  inches 
SS =   sin2 B 
CC =  cos 9 
UC(I) =   Complex relative permeability of layer i 
EC(I) =   Complex relative permittivity of layer i 
G(I) =  v/k0 *or laYer i»  as given by Eq.  (13) 
Z(I) =  k0zj where z^ is defined by Eq.  (6) 

The field intensities, An and Bn,  of the outgoing and reflected waves in 
layer n are denoted by 

AE and BE for the TE case without a conducting plane, 
AM and BM for the TM case without a conducting plane, 
AEC and BEC for the TE case with conducting plane, and 
AMC and BMC for the TM case with conducting plane. 

Between statements  S30 and S50,  the recursive calculations are carried 
out in accordance with Eqs.  (7) through (12).    Immediately following 
statement S50,  the transmission and reflection coefficients are calculated 
by means of Eqs.  (17),  (18),  and (^4).    These coefficients are denoted by 



TE =   Transmission coefficient for the TE case without 
conducting plane, 

TM        =   Transmission coefficient for the TM case without 
conducting plane, 

RE =   Reflection coefficient R1 for the TE case without 
conducting plane, 

RM =   Reflection coefficient R1 for the TM case without 
conducting plane, 

REC      =  Reflection coefficient R1 for the TE case with a 
conducting plane,  and 

RMC     =  Reflection coefficient R' for the TM case with a 
conducting plane. 

The symbols used for the output data are defined by 

REP,  PRE,   TEP,  FIPDE 

RMP,  PRM,  TMP,  FIPDM 

RECP,  PREC 

RMCP,  PRMC 

Power reflection coefficient, 
reflection phase,  power transmission 
coefficient, and insertion phase delay 
for TE case without conducting plane; 
Power reflection coefficient,  reflec- 
tion phase,  power transmission co- 
efficient,  and insertion phase delay 
for TM case without conducting plane; 
Power reflection coefficient and 
reflection phase for TE case with 
conducting plane; and 
Power reflection coefficient and 
reflection phase for TM case with 
conducting plane. 

A typical set of input data in the proper format is shown at the end of the 
computer program. 

This program will handle a maximum of 100 layers,  but this number 
can be increased to a much larger number simply by modifying the dimen- 
sion statement near the beginning of the program.    Many of the statements 
can be deleted when the multilayer with a conducting plane is the only case 
of interest,  or when this case is of no interest.    Furthermore,  the program 
can be simplified if all of the layers have the same permeability as free 
space.    A simple modification in the program can provide for increments 
to be taken in the frequency or the angle of incidence. 

I 
I 

I 
I 
[ 

I 
I 
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**♦ RUN 

«♦* «iCATRAN 
COMPLFX (C^ORTL. .CEXPL«»<~I •( IC ,FC * G. A^ « AM, Rr , RM, AFG , Rpr , r,7, 
AMC»BMCiF.YI,YI!«rypf , FXPT I.AFP»AMP.ryp,pc.RM,AFCD«R^C• 
AVCP.RVC.FP.F^.TE.TM)- 
DIMFNMON(D(1 ""> ).«="(! oA), TD< I ^ )."<l™) «TD( I on) ,7< ion), 

FIRST      RFAD I NOUT .8« (<«.N )- 
RPAD INPUT. 7, ( <0< I ) ♦ 1 = 1 , 1 . !.|_F,N) )- 
RFAD INPUT. 7, ( (F(! )d = M d.L^.N) )- 
RFAD INPUT.7, ( (TO( ! ) , I = 1 .1 ,».L^-N) >- 
RFAD INPUT.7, ( (U< I ). ! = 1 , 1 ,!«L^.N) )- 
RFAD INPUT«7. ((TP(I ) tI *t•1 «! .LF.N) )- 
NN=N+t- 
00 THROUGH(SS)tI = 1t1 * I»LF.N- 
FI = I- 

S5 WRITF OUTPUT.2.(FI.0( 15«F( I ),TD( M•"(n.TO( M)_ 
TP 1*6 »283185"*- 
DR=e>7.?95779- 
CI=.I.1.- 
FC(NN> = U- 
UC<NN)=1•- 
Z(0)=,0- 
WRITF OUTPUT.2- 
DO THR0UGH(S1 00) «<=1 . 1 .K,l_F««K- 
READ INPUT.7. (THETA.FGC )- 
TH=.01745329»THFTA- 
WAVE = 1 1 •807 14/FGr.- 
WRITE   OUTPUT. 2« ( TMFT A . FCC . u.'AVF )- 
WRITE   OUTPUT.2- 
*c;=SlN»<TH)#e,lM.(TH)- 
CC=rOS.(TH)- 
00   THROUGH(«.p">«1=1.1.I«LF*N- 
UC( I )=U( I )#d»-ri»TPd ) 5- 
PT.( I >*F ( I )»( 1 •-f I»TD( I ) )- 

S20 G(I )=Cl*C$QRTL«(Uf(I )*FC{ I )-cc ,_ 
Gz=ci*cr- 
G(NN)=CI*CC- 
DO   THROUGH(ST")«I=1»1♦I.LF«N- 
I1*1-1- 

530 Z( I )=Z( 1 I )+D( I i»TPI/'*AVr- 
AFs.^»(1•+ur(1)#G7/G(1)1- 
PF=«ei*( 1 »-UC ( 1 )*G7/r, '. 1 i )- 
A vi= •«=>#( i «+c:r (i )*cz/c (i ) )- 
RMS.S» (i ,-cr (i )*G7/r-; t ) )- 
AFC=1.- 
BFC=-1.- 
AMC=1•- 
RMC=1•- 
DO   THR0UGH( SS"^ ) « I I »2« 1 ♦ I I «LCNN- 
1=11-1- 
F =Uf( I I ) *G(I )/(«K ( I ) »G(I I ))- 
YI=G( I )*Z( I )- 
YI I=G( I I )»Z( 1 )- 

Fig.  5.    Digital-computer program for reflection and tranemiseion 
coefficients of plane multilayer. 
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FXP1 =crxDLt»' v I )- 
fXPI i=CP"xPL» ( VI I J- 

N       A^P=AF- 
AVP=AM- 
A^CP=AF<-- 
AwCP = A'>ir- 
A^= ( .S/PXP] 1 ) *( AFP#rxPl «Ff + 'j,- »rv/rXD| >_ 
nF=»R*EXPl ! * ( AEP*'-~XP I *rvtiJt^-;vP'i(r I j_ 
AEC=( .^/'XP! I ) * (ArrP*ryp; «rr-4 r.r r #p ■■/(. yp;,. 
P^Cstn'^XPI I* ( A-' T*-XC] *r V + ^t-T iFD/rx?| )_ 

F=*rr( 11 )*G(i )/CF.CU i*r c 11 j )- 
FP=|.♦F- 
F!*sl «-F- 
AMs{«S/^XPII)»(«VD*cXD|*cptiv/»rM/rxn!)_ 

«vi-.«s^ExPI i# (/,.VP*PXPl#rM + ,i««Fo/PXP I )- 
AVC=( »^/FXPl I )* (AV>CP*EXPI «rP4"vr«FV/f XFI )- 

55^ RMC=»5*EXPI I *■ ( AMCP*f.'XP I *-V+HVC #r P/*_XP I )- 
TE=1./AF- 
TMM./AM- 
ARG=2«*CC*Z<N)- 
FXP = C0ci. (ARG)-» I .MM. ( AR<~, 5- 
Rf=FXP*^F/AF- 
RM=FXP*RW/Av- 

RFC=FXP*BFC/AFC- 
pvC=rXP*BWf/Awr- 
TPP=(.ARS.TF)»P.^- 
TMP=(«ARS.T*M«P«?- 
RFP=(.ARS.RE).P.?- 
RMP=(«ARS«RV).P»?- 
RFCP=( »A-*?,.RFC ).P.2- 

RMCP=(•ABS.RvC!.P.?- 
FIPOF = -OR*FATÄM?. ( • I vi AT,, T", #R- 4L.Tr )- 
PIPnVr-oRftfft TAN P. ( • IMA', Tf. »V- ftL «T'-* )- 
PRFrDR*FATAN?« ( • I MAG»R'"» ,o«"A[_»R~ ) - 
PRM=OR#FATAN?»» ( • I VAG.RV « • R- AL »R'* ) - 
PRrr=nR*FATANJ?« (•ivft'.r?^-,, .''-~A;_ ,Qf ••'- « _ 

PRMr = DR*FATA*4?» ( • I V)AG«P*i'" * •r'"<,L • Rv ) - 
WRI TF  OUTPUT «?* CR^P.PRC-, r? o,r jp-^r >_ 
WRI T"7 OUTPUT « Pt (RV",PRV, f'n.F JP^M)_ 
W3ITE OUTPUT,?«(RFrp,pprr »_ 
WRITE OUTPUT«2. (RMfD.ppvr )- 

SI CO       A'RITE OUTPUT, ?- 
FNO   PROGRAM(FIR^T )- 

I 
I 
I 
I 

** p ATA 

1 5 
• 1^ • 1 - • t« • ?f» • »* 
R.n 4.n •>,-> ?.^ 1  .^ 

• ■"""Z , ^"i? ." ^ ? .->-•? . "> ">V 

1 •"' l •" i." 1 • * 1  .A 

• *■*■■ • -*> • 

• '..' n.~ 

Fig.  5.    Digital-computer program for reflection and transmission 
coefficients of plane multilayer, (cont. ) 
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APPENDIX  II 
COMPUTER PROGRAM FOR  THE  CYLINDRICAL MULTILAYER 

Figure 6 shows a computer program in Scatran for calculating the 
scattering coefficients and the scattering pattern of a layered dielectric 
cylinder, based on the equations developed in Section III.    The input 
data symbols are defined as follows: 

FN =  Number of layers, 
DPH =  Increment in scattering angle <p in degrees, 
RL(I) =  Outer radius of layer i in free-space wavelengths, 
E(I) =  Permittivity of layer i relative to that of free space, and 
U(I) =  Permeability of layer i relative to that of free space. 

This computer program is applicable only to lossless dielectric cylinders 
in which the center region is dielectric.    With a slight modification it will 
give the solution appropriate for a perfectly-conducting center region. 
In the form shown, the program v ill handle a maximum of 100 layers, 
but this can be extended greatly by changing the dimension statement. 

In this program the highest order of the Bessel and Neumann 
functions required is determined from the approximate equation L = 4 
+ kjyfRj^» where N denotes the number of layers.    In its present form, 
the program sets an upper limit of 100 for the maximum order of the 
Bessel and Neumann functions. 

The wave amplitudes in the various layers are denoted by A(I) and 
B(I) for the TM case and AP(I) and BP(I) for the TE case, where I re- 
presents the mode number n.    Between statements S25 and S26,  the program 
sets Ain = 1 and Bln - 0 in accordance with Eqs.  (36) and (37).    Next, 
the arguments kmRm and km+iRm for the Bessel functions are calcu- 
lated and are denoted by W.    Between statements S26 and S50, the Bessel 
and Neumann functions are obtained by calling a subroutine.    The follow- 
ing notation is used: 

FJA(I) =  Ji(kmRm), 

FJB(I) =  Ji(km+1Rm), 

FNA(I) =  Ni(kmRm), and 

FNB(I) =   Ni(km+1Rm) . 

In its present form,  the subroutine for the Bessel and Neumann functions 
is limited to arguments smaller than 1000. 

19 



Between statements S50 and S80,  the derivatives of the Bessel 
and Neumann functions are calculated.    These are denoted by 

FJP      = Jj(kmRm), 

FJPP   - J](km+1Rm). 

FNP      =  N!(k    R    ). and 
J    m   m 

FNPP   =  N!(k    xlR    ) . j    m+1   m 

Between S80 and SluO, the constants Umnt Vmn, Wmn, and Xmn 

defined in Eqs. (30) through (33) are calculated and are denoted by UJ, 
VJ, WJf and XJ for the TM case, and by UP, VP, WP, and XP for the 
TF case. Equations (28) and (29) are employed to calculate A^+i n 

and Bm+l,n which are denoted by A(J) and B(J) for the TM case and by 
AP(J) and BP(J) for the TE case. Between SI 10 and SI50 the scattering 
coefficients Dn are calculated by means of Eq. (45). They are denoted 
by D(I) and DP(I) for the TM and TE cases,  respectively. 

In the remainder of the program Eq.  (48) is used to calculate the 
echo width of the layered cylinder as a function of the angle <?>.    The 
symbols for the output data are defined by 

PHI =  Scattering angle © in degrees, 
ECHW        = Echo width/wavelength for TM case, and 
ECHWP     =  Echo width/wavelength for TE case. 

I 

2U 

1 
I 
I 
I 
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I 
I 
I 

*»* RUN 
### SCATRAN 

COMPLEX(EXP.ES.FF.FH.D.OP«ESP)- 
OIMENSION < RL <I 02 >.E <I 02 >,U(1021.D <102).FJA <102)•DP <102 >. 
FJBU02)«FNA{ 102).FNB( I 02).A(102>.9<!02>.AP<102).BP(102))- 

FIRST PI»3*1415926- 
TP=2.»PI- 
P2=PI/2«- 
CST*2«/PI- 
REAO   INPUT.7.(FN.DPH)- 
N*FN- 
REAO INPUT.7,(<RL(I ) .I = 1♦1, I.LE.N))- 
READ INPUT.7. ( (E< I >. 1 = 1 * 1 .ULE.N) )- 
READ INPUT.7.<<U<I).! = ! .1. I«LE«N))- 
00 THROUGH«S25).1=1.I.I.LE.N- 

525 WRITE 0UTPUT.2.(RL<I).E(I ).U(I ))- 
WRITE OUTPUT,2- 
NNsN+i- 
Lc4«+TP»RL(N)#SQRT«(E(N)*U(N)>- 
PR0VIDEDJL.G.100)*L=100- 
LL=L-1- 
E(NN) = U- 
U(NN)*1«- 
IJK*L- 
00 THR0UGH(S26).I:0.1.I.LE.L- 
A(I ) = 1.- 
B(I)=«0- 
AP(I)=1.- 

526 BP(I)=«0- 
DO THROUGHtSl10>.M«1.1«M.LE.N- 
MM=M+1- 
L = UK- 
W»TP»RL(M)*SORT.(U(M)»E(M) )- 
CALL SUBROUTINECFJA.FNA.L.IND)=BFX90.<W>- 
W*TP*RL(M)»SORT•(U« MM)#F(MM))- 
CALL SUBROUTINE(FJB♦FNR.L.INO)=BFX90•< W)- 
LL=L+1- 
00 THR0UGH(S50)«K=LL. I * IK.LE.IJK- 
FJA(IK>=.0- 
FNA«IK)=«0- 
FJB(lK)=,0- 

S50       FNB(IK)=.0- 
CNST=P2»U(MM)*TP#RL(M)- 
CNSTP*P2*E(MM)*TP*RL(M)- 
YM*SQRT.(E(M)/U(M))*CNST- 
YMP«SQRT«(U<M)/E(M))»CNSTP- 
YMM«SORT.(E<MM)/U(MM))»CNST- 
YMMP=SQRT,(U(MM)/E(MM))»CNSTP» 
DO THROUGH(SIOO),J=0.1.J.LE.LL- 
JJsJ+1- 
FJP*-FJA(JJ)- 
FJPP=-FJB(JJ)- 
FNP«-FNA(JJ)- 
FNPP=-FNB(JJ>- 
PROVIOEO(J«E•0)«TRANSFER TO(S80)- 
JJJr.J-l-. 
FJP*#5*(FJP+FJA<JJJ))- 

Fig.  6.    Digital-computer program for scattering patterns of a 
circular dielectric cylinder having several layers. 
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S80 

SI 00 
SI 10 

S150 

SI 80 

S200 

♦#♦ 
5.0 

• 1 
6.0 
1.0 

FJPP«.5*(FJPP+FJB<JJJ))- 
FNP».5»<FNP+FNA(JJJ))- 
FNPP»•5* C FNPP+FNB C JJJ))- 
FJZsFJAfJ)- 
FJleFJB(J)- 
FNZ*FNA(J)- 
FN!*FNBCJ)- 
UJsYMM*FJ2*FNPP-YM*FJP*FNl- 
VJ*YM*FJP»FJ\-YMM#FJZ»FJPP- 
WJsYMM*FNZ#FNPP-YM*FNP»FNl- 
XJ=YM»FNP#FJ!-YMM«FNZ#FJPP- 
AJsA(J)- 
BJ*B<J>- 
A ( J ) =UJ#A J-f WJ»BJ- 
B(J)»VJ*AJ+XJ*BJ- 
UP«YMMP*FJZ*FNPP-YMP»FJP»FN1- 
VP=YMP*FJP*FJ1-YMMP*FJZ*FJPP- 
WP=YMMP#FNZ*FNPP-YMP*FNP#FN1- 
XP=YMP*FNP*FJ1-YMMP*FNZ»FJPP- 
AJ=AP(J)- 
BJ=BP(J>- 
AP < J) *UP*AJ+WP*BJ- 
BP(J)»VP*AJ+XP*BJ- 
CONTINUE- 
CONTINUE- 
00 THROUGH(S150)•I«0«1«I.LE.LL- 
FI*I- 
DU )s-B(! )/(B(I)+{»I*l*)»A(I))- 
DP(I)=-BPCI)/(BP(I>+<•!.l.)*AP(I ) )- 
DMAG-.ABS.DtI)- 
DMAGP*.ABS.DP<F)« 
WR1TE OUTPUT . 1 • (F!•D(1)•DP(I ) •DMAG.DMAGP)- 
WRITE OUTPUT♦2- 
M=180#/DPH- 
DO THROUGH(S200)«1=0«1»I.LF.M- 
ES=.0- 
ESP=.0- 
F!M- 
PHIaFI»OPH- 
PR=•01745329#PH1- 
EN«1• - 
00 THROUGH<S!80).JsO«l«J.LE.LL- 
FFjsJ- 
COS*COS.(FFJ»PR)- 
ES*ES*EN*D ( J) »COS- 
ESP*ESP+EN#DP(J)*COS- 
EN=2.- 
EMAGP=.ABS.ESP- 
ECHWP=CST#EMAGP#EMAGP- 
EMAGs.ABS.ES- 
ECHW=CST*EMAG*EMAG- 
WRITE OUTPUTt2»(PHI•ECHW.ECHWP)- 
END PROGRAM(FIRST)- 
DATA 

5.0 
• 2 .3 .4 .5 

5.0        4.0        3.0        2.0 
1.0        1.0        1 .0        1.0 

Fig.  6.    Digital-computer program for scattering patterns of a 
circular dielectric cylinder having several layers. 
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